Movilidad tóxica. La amenaza fantasma de los pasivos mineros en los bofedales andinos

Autores/as

Jhonatan Herminio Pérez Ramírez, Universidad Nacional Santiago Antúnez de Mayolo | Lima | Perú; Mario Vladimir Leyva Collas, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú; Edwin Julio Palomino Cadenas, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú; Edell Doriza Aliaga Zegarra, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú; Francisco Claudio León Huerta, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú

Palabras clave:

Movilidad de metales; Pasivo Ambiental Minero; Drenaje Ácido de Mina; Bofedal; Especiación química.

Sinopsis

Este libro aborda una crisis ambiental invisible en el corazón de los Andes. Investiga el impacto del Pasivo Ambiental Minero (PAM) de Mesapata, una fuente persistente de contaminación que libera drenaje ácido de mina (DAM) cargado con metales pesados —arsénico, plomo, cadmio y cromo— hacia un frágil bofedal. La obra se centra en descifrar un proceso crítico: la movilidad tóxica. A través de una investigación meticulosa, se evalúa cómo estos elementos se especian en el suelo, se trasladan hacia la vegetación que sustenta la ganadería local y se infiltran en las aguas subterráneas. Más allá del diagnóstico, este estudio no solo cuantifica el grado de degradación de los servicios ecosistémicos, sino que también propone estrategias concretas de manejo para contener esta amenaza y proteger estos vitales ecosistemas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jhonatan Herminio Pérez Ramírez, Universidad Nacional Santiago Antúnez de Mayolo | Lima | Perú

Ingeniero Ambiental de la Universidad Nacional Santiago Antúnez de Mayolo.

Mario Vladimir Leyva Collas, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú

Químico de la Universidad Nacional Mayor de San Marcos, Magister en Gestión Ambiental en la Universidad Santiago Antúnez de Mayolo, Doctor en Ingeniería Química Ambiental en la Universidad Nacional de Trujillo.

Edwin Julio Palomino Cadenas, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú

Bachiller en Ciencias Biológicas: Universidad Nacional de San Cristóbal de Huamanga (UNSCH); Biólogo Microbiólogo: UNSCH; Maestro en Ciencias con mención en microbiología: Universidad Peruana Cayetano Heredia; Doctor en Ciencias Ambientales: Universidad Nacional de Trujillo.

Edell Doriza Aliaga Zegarra, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú

Ingeniera Química de la UNCP, Magister en Gestión Ambiental en la UNASAM y doctora en medio ambiente y desarrollo sostenible en la UNFV.

Francisco Claudio León Huerta, Universidad Nacional Santiago Antúnez de Mayolo | Huaraz | Perú

Ingeniero Ambiental de la Universidad Nacional Santiago Antúnez de Mayolo, Magister en Ciencias e Ingeniería con Mención en Gestión Ambiental de la Universidad Nacional Santiago Antúnez de Mayolo.

Citas

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.643972

Balmuri, S. R., Selvaraj, U., Kumar, V. V., Anthony, S. P., Tsatsakis, A. M., Golokhvast, K. S., & Raman, T. (2017). Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment. Environmental Research, 152, 189–197. https://doi.org/10.1016/j.envres.2016.10.005

Banerjee, S., Datta, S., Chattyopadhyay, D., & Sarkar, P. (2011). Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. Journal of Environmental Science and Health–Part A Toxic/Hazardous Substances and Environmental Engineering, 46(14), 1736–1747. https://doi.org/10.1080/10934529.2011.623995

Bourg, A. C. M. (1995). Speciation of Heavy Metals in Soils and Groundwater and Implications for Their Natural and Provoked Mobility. In Heavy Metals (pp. 19-31). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-79316-5_2

Brookins, D. G. (1988). Eh-pH diagrams for geochemistry. Springer Verlag. https://doi.org/10.1007/978-3-642-73093-1

Caporale, A. G., & Violante, A. (2016). Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Current Pollution Reports, 2(1), 15–27. https://doi.org/10.1007/s40726-015-0024-y

Castillo, L., Satalaya, C., Paredes, Ú., Encalada, M., Zamora, J., & Cuadros, M. (2021). Pasivos ambientales en el Perú. Contraloría General de la República.

Cruz, M., & Guzmán, Á. (2007). La contaminación de suelos y aguas. Su prevención con nuevas sustancias naturales. Universidad de Sevilla.

Czikkely, M., Neubauer, E., Fekete, I., Ymeri, P., & Fogarassy, C. (2018). Review of heavy metal adsorption processes by several organic matters from wastewaters. Water, 10(10). https://doi.org/10.3390/w10101377

Defo, C., Kfuban, Y. B. P., Kaur, R., & Bemmo, N. (2017). Spatial distribution of heavy metals in groundwaters and health risks associated in the Ntem watershed, Yaoundé, Cameroon. Water Science and Technology: Water Supply, 17(3), 855–868. https://doi.org/10.2166/ws.2016.178

Dianyi Yu, M. D. (2008). Chromium (Cr) toxicity. Agency for Toxic Substances and Disease Registry. https://n9.cl/u90ek

Domergue, F. L., & Vedy, J. C. (1992). Mobility of heavy metals in soil profiles. International Journal of Environmental Analytical Chemistry, 46(1-3), 13–23. https://doi.org/10.1080/03067319208026993

Duffus, J. H. (2002). “Heavy metals”–A meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793–807. https://doi.org/10.1351/pac200274050793

Fang, W., Wei, Y., & Liu, J. (2016). Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics. Journal of Hazardous Materials, 310, 1–10. https://doi.org/10.1016/j.jhazmat.2016.02.025

Gemeda, F. T., Guta, D. D., Wakjira, F. S., & Gebresenbet, G. (2021). Occurrence of heavy metal in water, soil, and plants in fields irrigated with industrial wastewater in Sabata town, Ethiopia. Environmental Science and Pollution Research, 28(10), 12382–12396. https://doi.org/10.1007/s11356-020-10621-6

Hu, J., Zhou, S., Wu, P., & Qu, K. (2017). Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China. PLOS ONE, 12(12). https://doi.org/10.1371/journal.pone.0189295

Kumar, A., Kumar, A., Cabral-Pinto, M., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S., Khan, S. A., & Yadav, K. K. (2020). Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072179

Kumari, N., & Jagadevan, S. (2016). Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes – A comprehensive review. Chemosphere, 163, 400–412. https://doi.org/10.1016/j.chemosphere.2016.08.044

Lytle, D. A., & Schock, M. R. (2005). Formation of Pb(IV) oxides in chlorinated water. Journal–American Water Works Association, 97(11), 102–114.

MINAM. (2015). Guía para la elaboración de estudios de Evaluación de Riesgos a la Salud y el Ambiente (ERSA) en sitios contaminados. Ministerio del Ambiente.

MINAM. (2019). Guia de evaluación del estado del ecosistema de bofedal. Ministerio del Ambiente.

Miranda, L. S., Wijesiri, B., Ayoko, G. A., Egodawatta, P., & Goonetilleke, A. (2021). Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Research, 202. https://doi.org/10.1016/j.watres.2021.117386

Pagnanelli, F., Moscardini, E., Giuliano, V., & Toro, L. (2004). Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: Pollution detection and affinity series. Environmental Pollution, 132(2), 189–201. https://doi.org/10.1016/j.envpol.2004.05.002

Palomino Cadenas, J. H. (2022). Movilidad del As, Pb, Cd y Cr en el bofedal del entorno del pasivo ambiental minero de Mesapata, Ancash-Perú, 2022-2023 [Proyecto de tesis, Universidad Nacional]

Pavesi, T., & Moreira, J. C. (2020). Mechanisms and individuality in chromium toxicity in humans. Journal of Applied Toxicology, 40(9), 1183–1197. https://doi.org/10.1002/jat.3965

Solano, A. M. (2005). Estudio de la movilización de metales pesados. In Movilización de metales pesados en residuos y suelos industriales afectados por la hidrometalurgia del Cinc (pp. 21-40). Universidad de Barcelona.

Soliman, N. K., & Moustafa, A. F. (2020). Industrial solid waste for heavy metals adsorption features and challenges; a review. Journal of Materials Research and Technology, 9(5), 10235–10253. https://doi.org/10.1016/j.jmrt.2020.07.045

Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology, 20(6), 659–667. https://doi.org/10.1016/j.copbio.2009.09.013

Valenzuela, C., Campos, V. L., Yañez, J., Zaror, C. A., & Mondaca, M. A. (2009). Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from camarones river, Northern Chile. Bulletin of Environmental Contamination and Toxicology, 82(5), 593–596. https://doi.org/10.1007/s00128-009-9659-y

Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292. https://doi.org/10.4067/S0718-95162010000100005

Wan, X., Lei, M., & Chen, T. (2020). Review on remediation technologies for arsenic-contaminated soil. Frontiers of Environmental Science & Engineering, 14(2), 24. https://doi.org/10.1007/s11783-019-1203-7

Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Science of the Total Environment, 366(2–3), 701–721. https://doi.org/10.1016/j.scitotenv.2005.09.005

Wei, L., Ding, Q., Guo, H., Xiu, W., & Guo, Z. (2021). Forms and mobility of heavy metals/metalloids in sewage-irrigated soils in the North China Plain. Journal of Soils and Sediments, 21(1), 39–50. https://doi.org/10.1007/s11368-020-02744-7

Movilidad tóxica. La amenaza fantasma de los pasivos mineros en los bofedales andinos

Descargas

Publicado

October 28, 2025

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Detalles sobre el formato de publicación disponible: PDF

PDF

ISBN-13 (15)

978-9942-561-78-7

Fecha de publicación (01)

2025-10-28