Concrete and hot climates in northern Peru. Self-repair and strength of concrete incorporating the bacterium Lysinibacillus sphaericu
Keywords:
Bacterial concrete; calcite precipitation; concrete self-repair; concrete strength; Lysinibacillus sphaericus.Synopsis
In the field of construction, the use of concrete is unavoidable and, together with it, there are several anomalies that affect its process. The objective of the research was to determine the influence of the bacterium Lysinibacillus sphaericus on its properties of compressive strength and self-repair of microcracks in concrete, using the dosages of 15, 20 and 25 ml/m3 of concrete, having a design of standard mixes with a w/c ratio of 0.43, where it was obtained that the consistency of the standard concrete is 5" and the maximum value obtained was by adding 15 ml/m3 giving a value of 5. 5", also the compressive strength of the standard concrete at 28 days was 105%, and the maximum strength was obtained by adding 25 ml/m3 to the concrete having a value of 121% unlike the standard concrete of an increase of 16% at the age of 28 days, on the other hand the self-repair was observed by SEM tests in the science laboratory and the improvement of the compressive strength of concrete by breaking tests in the concrete laboratory; The self-repair analysis was performed at 7 and 14 days, obtaining the best results for the 25 ml/m3 dose at 13% and 69% respectively by SEM. These results are a starting point for other researchers, either to replicate these procedures or to implement new alternatives in order to prevent negative effects on the useful life of the structures and the environment.
Downloads
References
Alarcón, J. (2019). Influencia de la incorporación del aditivo bacteriano en la reparación del proceso de fisuración controlada del concreto. [Tesis de pregrado, Universidad Nacional de Cajamarca]. Repositorio institucional http://repositorio.unc.edu.pe/handle/UNC/3243
Algaifi, H.A., Bakar, S.A., Sam, A.R.M., Abidin, A.R.Z., Shahir, S., & Al-Towayti, W.A.H. (2018). Numerical modeling for crack self-healing concrete by microbial calcium carbonate. Construction and Building Materials, 189, 816-824.. http://doi.org/10.1016/j.conbuildmat.2018.08.218.
Amer Algaifi, H., Abu Bakar, S., Rahman Mohd. Sam, A., Ismail, M., Razin Zainal Abidin, A., Shahir, S., & Ali Hamood Altowayti, W. (2020). Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete. Construction and Building Materials, 254, 119258. https://doi.org/10.1016/j.conbuildmat.2020.119258.
Bergh, J.M. Van Der, Miljević, B., Šovljanski, O., Vučetić, S., Markov, S., Ranogajec, J., & Bras, A. (2020). Preliminary approach to bio-based surface healing of structural repair cement mortars. Construction and Building Materials, 248. http://doi.org/10.1016/j.conbuildmat.2020.118557
Chaerun, S.K., Syarif, R., & Wattimena, R.K. (2020). Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence. Scientific Reports, 10(1) 1-9. http://doi.org/10.1038/s41598-020-74127-4
Charpe, A.U., Latkar, M.V.Y., & Chakrabarti, T. (2017). Microbially assisted cementation – A biotechnological approach to improve mechanical properties of cement. Construction and Building Materials, 135. 472-476. https://doi.org/10.1016/j.conbuildmat.2017.01.017
Corrales Ramírez, L.C. y Caycedo Lozano, L. (2020). Principios físicoquímicos de los colorantes utilizados en microbiología Principios físicoquímicos de los colorantes. Nova, 18(33). http://doi.org/.22490/24629448.3701
Ekprasert, J., Fongkaew, I., Chainakun, P., Kamngam, R., & Boonsuan, W. (2020). Investigating mechanical properties and biocement application of CaCO3 precipitated by a newly-isolated Lysinibacillus sp. WH using artificial neural networks. Scientific Reports, 10(1), 1-13. http://orcid.org/10.1038/s41598-020-73217-7.
Erşan, Y.C., Da Silva, F.B., Boon, N., Verstraete, W., & De Belie, N. (2015). Screening of bacteria and concrete compatible protection materials. Construction and Building Materials, 88, 196-203. http://doi.org/10.1016/j.conbuildmat.2015.04.027.
Gebremariam, A., Chekol, Y., & Assefa, F. (2021). Isolation, characterization, and bio-insecticidal efficiency of Ethiopian isolates of Bacillus thuringiensis against Galleria mellonella L. (Lepidoptera: Pyralidae) and tomato whitefly, Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Egyptian Journal of Biological Pest Control, 3(1). http://doi.org/10.1186/s41938-021-00375-9.
Giriselvam, M.G., Poornima, V., Venkatasubramani, R., & Sreevidya, V. (2018). Enhancement of crack healing efficiency and performance of SAP in biocrete. IOP Conference Series: Materials Science and Engineering, 310(1). http://doi.org/10.1088/1757-899X/310/1/012061.
Gupta, S., Pang, S.D., y Kua, H.W. (2017). Autonomous healing in concrete by bio-based healing agents – A review. Construction and Building Materials, 146. 419-428. https://doi.org/10.1016/j.conbuildmat.2017.04.111.
Hernández, R., Fernández, C., y Baptista, P. (2014). Metodología de la investigación, 6. McGraw Hill
Jang, I., Son, D., Kim, W., Park, W., & Yi, C. (2020). Effects of spray-dried co-cultured bacteria on cement mortar. Construction and Building Materials, 243. http://doi.org/10.1016/j.conbuildmat.2020.118206.
Kalhori, H., & Bagherpour, R. (2017). Application of carbonate precipitating bacteria for improving properties an repairing cracks of shotcrete. Construction and Building Materials, 148. 249-260. http://doi.org/10.1016/j.conbuildmat.2017.05.074
Mamo, G. (2019). Alkaliphiles: las herramientas biológicas emergentes que mejoran la durabilidad del hormigón.
Marwar, N.F., Mohd Sam, A.R., Shahir, S., Algaifi, H.A., Abd Khalid, N.H., Mohd Ali, M.F., Mohd Almi, M.K., & Ibrahim, I.S., (2020). Properties of fly ash concrete containing tropical soil bacteria. IOP Conference Series: Materials Science and Engineering, 849(1). http://doi.org/10.1088/1757-899X/849/1/012063
Mendez-Ubeda, J., Flores Hernandez, M., y Paramo-Aguilera, L. (2017). Aislamiento e identificación de bacillus subtilis y evaluación del antagonismo in vitro frente hongos fitopatógenos. Nexo, 30(2), 96-110.
Mohammed, A., Rafiq, S., Mahmood, W., Noaman, R., Ghafor, K., Qadir, W., & Kadhum, Q. (2020). Characterization and modeling the flow behavior and compression strength of the cement paste modified with silica nano-size at different temperature conditions. Construction and Building Materials, 257, 119590. https://doi.org/10.1016/j.conbuildmat.2020.119590
Mutitu, D.K., Wachira, J.M., Mwirichia, R., Thiong’o, J.K., Munyao, O.M., & Muriithi, G. (2019). Influence of Lysinibacillus sphaericus on compressive strength and water sorptivity in microbial cement mortar. Heliyon, 5(11), 1-8. http://doi.org/10.1016/j.heliyon.2019.e02881
Norma técnica peruana NTP 339.034. (2015). Hormigón (concreto). Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Indecopi, 4(3), 22.
Norma técnica peruana NTP 339.035 (2009). Método de ensayo para la medición del asentamiento del concreto de Cemento Portland.
Norma técnica peruana NTP 339.183 (2013). Práctica normalizada para la elaboración y curado de especímenes de concreto en el laboratorio.
Pumalora, A. Rodríguez-Torres, J.A. García-Rodríguez, G.P.-A. (2013). Manual de Microbiología y Parasitología. Elsevier.
Rauf, M., Khaliq, W., Khushnood, R.A., & Ahmed, I., (2020). Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete. Construction and Building Materials, 258, 119578. https://doi.org/10.1016/j.conbuildmat.2020.119578
Shanmuga Priya, T., Ramesh, N., Agarwal, A., Bhusnur, S., & Chaudhary, K. (2019). Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Construction and Building Materials, 226, 827-838. http://doi.org/10.1016/j.conbuildmat.2019.07.172
Sidiq, A., Gravina, R.J., Setunge, S., & Giustozzi, F. (2020). High-efficiency techniques and micro-structural parameters to evaluate concrete self-healing using X-ray tomography and Mercury Intrusion Porosimetry: A review. Construction and Building Materials, 252, 119030. https://doi.org/10.1016/j.conbuildmat.2020.119030
Vashisht, R., Attri, S., Sharma, D., Shukla, A., & Goel, G. (2018). Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete. Microbiological Research, 207, 226-231. http://doi.org/10.1016/j.micres.2017.12.010
Vijay, K., Murmu, M., & Deo, S. (2017). Bacteria based self healing concrete – A review. Construction and Building Materials, 152, 1008-1014. https://doi.org/10.1016/j.conbuildmat.2017.07.040
Wang, J., Van Tittelboom, K., De Belie, N., & Verstraete, W. (2012). Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 26(1), 532-540. http://doi.org/10.1016/j.conbuildmat.2011.06.054
Xu, K., Yuan, Z., Rayner, S., & Hu, X. (2015). Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. Egyptian Journal of Biological Pest Control, 1-12. http://doi.org/10.1186/s12864-015-1359-x
